Given a probability/measure space $(S, \Sigma, \mu) = ([0,1], \mathscr B([0,1]), \lambda)$, let random variable/measurable function $f$ and its derivative $f' \in \mathscr L^{1} (S, \Sigma, \mu)$.
Suppose f' is continuous.
Using Dominated Convergence Theorem to evaluate
$$\lim_{n \to \infty }\int_{S} f'(\frac{nx}{nx+1}) \cos(f(x)) dx$$
I guess we need to find $g$ s.t.
$$|f'(\frac{nx}{nx+1}) \cos(f(x))| \le g$$
$$g \in \mathscr L^{1} (S, \Sigma, \mu)$$
So:
$$|f'(\frac{nx}{nx+1}) \cos(f(x))|$$
$$\le |f'(\frac{nx}{nx+1})| |\cos(f(x))|$$
$$\le |f'(\frac{nx}{nx+1})|$$
$$\le |f'(a)|$$
where $a \in S$ s.t. $a$ maximises $f'(a)$
$g: = |f'(a)| \in L^{1} (S, \Sigma, \mu) \ \because f' \in L^{1} (S, \Sigma, \mu)$
Once a $g$ is found, we have
$$\lim_{n \to \infty} \int_{S} f'(\frac{nx}{nx+1}) \cos(f(x)) dx$$
$$ = \int_{S} \lim_{n \to \infty} f'(\frac{nx}{nx+1}) \cos(f(x)) dx$$
$$ = \int_{S} f'(\lim_{n \to \infty} \frac{nx}{nx+1}) \cos(f(x)) dx$$
$$ = \int_{S} f'(1) \cos(f(x)) dx$$
$$ = f'(1) \int_{S} \cos(f(x)) dx$$
If that's right, any further simplification possible? If that's wrong, how else can I approach this problem?