Here is Gauss Lemma : "Let $a$, $b$ and $c$ three integers. If $\gcd(a,b)=1$ and if $a$ divides $bc$ then $a$ divides $c$."
I am working on generalizations of this lemma.
The first one is : "Let $a$, $b_1$,...,$b_n$ integers. If it exists $i \in \{1,...,n\}$ such as $\gcd(a,b_i)=1$ and if $a$ divides $\prod\limits_{k=1}^{n} b_k$ then $a$ divides $\prod \limits_{\substack{k=1 \\ k \neq i}}^{n} b_k$."
For the proof I use Bézout theorem to obtain : $au+b_iv=1$ then I multiply the equation by $\prod \limits_{\substack{k=1 \\ k \neq i}}^{n} b_k$. I obtain : $au\prod \limits_{\substack{k=1 \\ k \neq i}}^{n} b_k +v\prod\limits_{k=1}^{n} b_k=\prod \limits_{\substack{k=1 \\ k \neq i}}^{n} b_k$. Using the hypothsesis, I have : $a(u\prod \limits_{\substack{k=1 \\ k \neq i}}^{n} b_k +vQ)= \prod \limits_{\substack{k=1 \\ k \neq i}}^{n} b_k$ where $Q \in \mathbb{Z}$. That is why $a$ divides $\prod \limits_{\substack{k=1 \\ k \neq i}}^{n} b_k$.
The second one is : "Let $a$, $b_1$,...,$b_n$ integers. If forall $i \in \{1,...,n-1\}$, $\gcd(a,b_i)=1$ and if $a$ divides $\prod\limits_{k=1}^{n} b_k$ then $a$ divides $b_n$."
For the proof, I use Bézout again to obtain $(n-1)$ equations of the form $au_i+b_i v_i=1, \ \forall i \in \{1,...,n-1\}$.
I multiply all these equations to have $\prod \limits_{i=1}^{n-1} (au_i+b_i v_i)=1$. Then I notice by developing the expression that I have $aK+b_1...b_{n-1}\prod \limits_{i=1}^{n-1} v_i=1$ where $K \in \mathbb{Z}$. I notice that if I have forall $i \in \{1,...,n-1\}$, $\gcd(a,b_i)=1$, I have $\gcd(a,\prod \limits_{i=1}^{n-1}b_i)=1$. To conclude I use the initial Gauss Lemma (with three integers).
For the last one I was wondering if it can work : "Let $a$, $b_1$,...,$b_n$ integers. If $\gcd(a,b_1,...,b_{n-1})=1$ and if $a$ divides $\prod\limits_{k=1}^{n} b_k$ then $a$ divides $b_n$."
Indeed, I tried to use Bézout generalized to have $au_0+b_1 u_1+...+b_{n-1} u_{n-1}=1$ but it does not seem to work like the previous lemma. So with this hyspothesis does this generalization can hold ?
Thanks in advance !