We consider the integral of the analytic function
$$
F(z)=\frac{\cosh(az)}{\cosh(z)}
$$
on the rectangle contour of $C=C_1\cup C_2\cup C_3\cup C_4$, which are $y=0, \:x=R,\:y=\pi,\:x=-R$ respectively. By Cauchy's residue theorem, we have
$$
\int_{-R}^RF(x)dx+\int_{C_2}F(z)dz+\int_{C_3}F(z)dz+\int_{C_4}F(z)dz=2\pi i \operatorname{Res}\left(F,\frac{\pi i}{2}\right)\tag1
$$
Note that the only pole in the contour is $z=\frac{\pi i}{2}$. Since
$$
\operatorname{Res}\left(F,\frac{\pi i}{2}\right)=\lim_{z\to \frac{\pi i}{2}}(z-\frac{\pi i}{2})F(z)=\lim_{z\to \frac{\pi i}{2}}\frac{\cosh(az)}{\sinh(z)}=- i\cos \frac{\pi a}{2}\tag2
$$
Moreover
\begin{align}
\int_{C_3}F(z)dz&=\int_R^{-R}\frac{\cosh(a(x+\pi i))}{\cosh(x+\pi i)}\:dx
\\
&=\int_{-R}^{R}\frac{\cosh(ax)\cosh(a\pi i)+\sinh(ax)\sinh(a\pi i)}{\cosh(x)}\:dx
\\
&=\cosh(a\pi i)\int_{-R}^{R}\frac{\cosh(ax)}{\cosh(x)}\:dx\tag{*}
\end{align}
(*): Since $\frac{\sinh(ax)}{\cosh(x)}$ is odd
$$
\int_{-R}^{R}\frac{\sinh(ax)}{\cosh(x)}\:dx=0
$$
Also since $|a|<1$
$$
\left|\int_{C_2}F(z)dz\right|=\left|\int_{0}^{\pi}\frac{e^{a(R+iy )}+e^{-a(R+iy )}}{e^{R+iy}+e^{-(R+iy )}}idy\right|\leqslant \frac{2\pi e^{|a| R}}{e^{R}-e^{-R}}=\frac{2\pi e^{(|a|-1) R}}{1-e^{-2R}}\to0\tag3
$$
as $R\to\infty$.
Along with
$$
\left|\int_{C_4}F(z)dz\right|=\left|\int_{\pi}^{0}\frac{e^{a(-R+iy )}+e^{-a(-R+iy )}}{e^{-R+iy}+e^{-(-R+iy )}}idy\right|\leqslant \frac{2\pi e^{|a| R}}{e^{R}-e^{-R}}=\frac{2\pi e^{(|a|-1) R}}{1-e^{-2R}}\to0\tag4
$$
as $R\to\infty$.
By $(1),(2),(3)$ and $(4)$, we have
$$
\lim_{R\to\infty}(1+\cosh(a\pi i))\int_{-R}^{R}\frac{\cosh(ax)}{\cosh(x)}\:dx=2\pi\cos {\frac{\pi a}{2}}
$$
i.e.
$$
\int_{-\infty}^{\infty}\frac{\cosh(ax)}{\cosh(x)}\:dx=\frac{2\pi\cos {\frac{\pi a}{2}}}{1+\cosh(a\pi i)}=\frac{2\pi\cos {\frac{\pi a}{2}}}{2\cos^2 {\frac{\pi a}{2}}}=\pi\sec{\frac{\pi a}{2}}
$$
Finally, since $\frac{\cosh(ax)}{\cosh(x)}$ is even, we have
$$
\int_{0}^{\infty}\frac{\cosh(ax)}{\cosh(x)}\:dx=\frac{\pi}{2}\sec{\frac{\pi a}{2}}
$$