2 integrals to calculate:$\int_0 ^{2\pi} e^{\sin\phi}\sin(n\phi -\sin (\phi))d\phi$
$\int_0 ^{2\pi} e^{\cos\phi}\cos(n\phi -\cos (\phi))d\phi$
I tried to make a substitution:$\cos \phi=\frac{z+z^{-1}}{2}$ $\sin \phi=\frac{z-z^{-1}}{i2}$. And by the hint I will get to $\int_D e^zz^{-(n+1)}dz$, $D:=\{|z|<1\}$. But I am confused with this part: $\cos(n\phi -\cos (\phi))$. Thanks in advance.