I've found in my book that: $$\liminf_{n\to\infty} \ x_{n} = \sup\{\inf\{x_{k}:k\geq n \}:n \in \mathbb{N}\}$$ $$\limsup_{n\to\infty} \ x_{n} = \inf\{\sup\{x_{k}:k\geq n \}:n \in \mathbb{N}\}$$
But I don't understand why. According to my book the definition of $\limsup$ and $\liminf$ is the following:
$$\limsup_{n\to\infty} \ s_{n} = \lim_{N\to\infty} \sup \{s_{n}:n > N \} $$
$$\liminf_{n\to\infty} \ s_{n} = \lim_{N\to\infty} \inf \{s_{n}:n > N \} $$