Let $f : D\subseteq\mathbb{R} \to \mathbb{R}$ be a function. Then, the definition of limit says that: $$\lim_{x \to c} f(x) = L \Longleftrightarrow \forall \varepsilon\in\mathbb{R}:\exists\delta\in\mathbb{R}:\forall x \in D\setminus\{c\} : |x - c| < \delta \longrightarrow |f(x) - L| < \epsilon.$$ Moreover, whenever $\lim_{x \to c} f(x)$ exists, its value $L$ is unique.
Now, let $f : \{c\}\to\mathbb{R}$ be a function whose domain $D$ is a singleton set containing a particular real number $\{c\}$. Then, $\lim_{x\to c}f(x)$ exists and its value is not unique because $\forall x \in \{c\}\setminus\{c\} = \emptyset$ in the following formula is vacuously true for any $L$: $$\forall \varepsilon\in\mathbb{R}:\exists\delta\in\mathbb{R}:\forall x \in \{c\}\setminus\{c\} : |x - c| < \delta \longrightarrow |f(x) - L| < \epsilon.$$
How to fix this situation? By stating in the epsilon-delta definition of limit that an empty domain and a singleton domain are not allowed to have limit because a metric space $D$ must have at least two members?