Let $T \equiv PP + 1 \equiv \{ ab + 1 : a,b \text{ are prime }\} \subset \Bbb{Z}^{\times}$. Consider the subsemigroup generated by $T$. How can I show that it is not finitely generated, by that I mean there doesn't exist a finite set of integers $\{z_i\}$ such that each element of $\langle T \rangle$ can be written $t = z_1^{e_1}\cdots z_n^{e_n}$ for some $e_j \geq 0$?
I suppose I could do it by showing that there are infinitely many primes $p = 1 + ab$, but how do I do that?