Let $x_0=0$. Define $x_{n+1}=\cos x_n$ for every $n\ge0$. Then
A) $\{x_n\}$ is increasing and convergent
B) $\{x_n\}$ is decreasing and convergent
C) $\{x_n\}$ is convergent and $x_{2n}\lt\lim_{m\to\infty} x_m\lt x_{2n+1} $ for every $n\in\Bbb N$
D) $\{x_n\}$ is not convergent
Attempt: $x_0=0,x_1=1$, and $0\le x_n\le1$ for $n\gt 1$
So this sequence is non constant and bounded, Hence convergent But, I am unable to pick the right option.