2

Find $$\lim_{x \to 2} \frac{4-x^2}{3-\sqrt{x^2+5}}$$ (without L'Hopital)

Where is the following wrong? (The limit is 6.)

\begin{align}\lim_{x \to 2} \frac{4-x^2}{3-\sqrt{x^2+5}}& =\lim_{x \to 2} \frac{(2-x)(2+x)}{\sqrt{9-x^2-5}}= \\ & =\lim_{x \to 2} \frac{(2-x)(2+x)}{\sqrt{-x^2+4}}=\\ & = \lim_{x \to 2}\sqrt{(2-x)(2+x)}=0. \end{align}

gbox
  • 12,867

4 Answers4

5

You messed up in the first step when you said $3-\sqrt{x^2+5}=\sqrt{9-x^2-5}$. You seem to be trying to use $\sqrt{a}+\sqrt{b}=\sqrt{a+b}$ even though this is almost always false (as an example, take $a=b=1$).

ASKASK
  • 9,000
  • 4
  • 28
  • 49
1

$$\lim_{x\to 2}\frac{4-x^2}{3-\sqrt{x^2+5}}=\lim_{x\to 2}\frac{\left(4-x^2\right)\left(3+\sqrt{x^2+5}\right)}{\left(3-\sqrt{x^2+5}\right)\left(3+\sqrt{x^2+5}\right)}$$

$$=\lim_{x\to 2}\frac{\left(4-x^2\right)\left(3+\sqrt{x^2+5}\right)}{3^2-\left(\sqrt{x^2+5}\right)^2}=\lim_{x\to 2}\frac{\left(4-x^2\right)\left(3+\sqrt{x^2+5}\right)}{4-x^2}$$

$$=\lim_{x\to 2}\left(3+\sqrt{x^2+5}\right)=3+\sqrt{2^2+5}=6$$

user236182
  • 13,324
1

Let $f(x) = x^2, g(x) = \sqrt {x^2 + 5}.$ The expression equals

$$\frac{(f(x) - f(2))/(x-2)}{(g(x) - g(2))/(x-2)}.$$

By definition of the derivative, as $x\to 2$ this $\to f'(2)/g'(2),$ which is easy to compute.

zhw.
  • 105,693
0

$$\frac{4-x^2}{3-\sqrt{x^2+5}}=(4-x^2)\frac{3+\sqrt{x^2+5}}{9-(x^2+5)}=3+\sqrt{x^2+5}$$ $$\lim_{x\to2}\frac{4-x^2}{3-\sqrt{x^2+5}}=6$$

Kay K.
  • 9,931