Find $$\lim_{x \to 2} \frac{4-x^2}{3-\sqrt{x^2+5}}$$ (without L'Hopital)
Where is the following wrong? (The limit is 6.)
\begin{align}\lim_{x \to 2} \frac{4-x^2}{3-\sqrt{x^2+5}}& =\lim_{x \to 2} \frac{(2-x)(2+x)}{\sqrt{9-x^2-5}}= \\ & =\lim_{x \to 2} \frac{(2-x)(2+x)}{\sqrt{-x^2+4}}=\\ & = \lim_{x \to 2}\sqrt{(2-x)(2+x)}=0. \end{align}