While doing some numerical experiments, I discovered a curious integral that appears to have a simple closed form: $${\large\int}_0^\infty e^{-x}\prod_{n=1}^\infty\left(1-e^{-24\!\;n\!\;x}\right)dx\stackrel{\color{gray}?}=\frac{\pi^2}{6\sqrt3}\tag1$$ Could you suggest any ideas how to prove it?
The infinite product in the integrand can be written using q-Pochhammer symbol: $$\prod_{n=1}^\infty\left(1-e^{-24\!\;n\!\;x}\right)=\left(e^{-24\!\;x};\,e^{-24\!\;x}\right)_\infty\tag2$$