4

My question is: Solve $\sqrt{x^2 +2x + 1}-\sqrt{x^2-4x+4}=3$

I deduced that:$LHS= x+1-(x-2)$

I am unable to solve this equation. I would like to get some hints to solve it.

Asaf Karagila
  • 393,674
mgh
  • 1,005
  • 2
  • 10
  • 22

2 Answers2

8

$$\sqrt {x^2 +2x + 1}-\sqrt { x^2-4x+4}= \sqrt{(x+1)^2} - \sqrt{(x-2)^2}=|x+1|-|x-2|$$

You have to consider three cases:

  • $x \geq 2$
  • $-1<x<2$
  • $x \leq -1$
Gigili
  • 5,503
  • 8
  • 41
  • 62
1

$\sqrt {x^2 +2x + 1}-\sqrt { x^2-4x+4}= \sqrt{(x+1)^2} - \sqrt{(x-2)^2}=|x+1|-|x-2|=3$

$|x+1|-|x-2|=3$

1) $x\in(-\infty, -1)$$\Rightarrow$$|x+1|=-(x+1)=-x-1$, $|x-2|=-(x-2)=2-x$.

$|x+1|-|x-2|=3$$\Rightarrow$ $-x-1-2+x=3$$\Rightarrow$$-3=3$, this is a contradiction.

In this interval equation has no solution.

2) $x\in[-1, 2)$$\Rightarrow$ $|x+1|=x+1$, $|x-2|=-(x-2)=2-x$.

$|x+1|-|x-2|=3$$\Rightarrow$ $ x+1-2+x=3$ $\Rightarrow$$2x=4$$\Rightarrow$$x=2$.

$2\notin [-1, 2)$. Also in this interval equation has no solution.

3) $x\in(2, \infty)$$\Rightarrow$ $|x+1|=x+1$, $|x-2|=x-2$.

$|x+1|-|x-2|=3$$\Rightarrow$ $ x+1-x+2=3$ $\Rightarrow$$3=3$.

On this interval equation has infinity solutions.

Cameron Buie
  • 102,994
Madrit Zhaku
  • 5,294
  • 1
    More precisely, the last interval is the solution set. It would still have "infinity solutions" if the solution set were, say, $(2,3)$, or the set of integers greater than $2$. – Cameron Buie Jul 07 '12 at 12:10
  • Nitpick: The number $2$ is not contained in any of your intervals now. – TMM Jul 07 '12 at 13:04