I need help in integrating this integral:
$$\int_{-\infty}^{\infty} e^{-2b x^2} \, dx$$
Knowing the value of $\int_{-\infty}^{\infty} e^{-x^2} \, dx$, and the integral for $e^{bx}$, I'm guessing that it would go out and evaluate into something like:
$$\int_{-\infty}^{\infty} e^{-2b x^2} \, dx= \frac{\sqrt\pi}{-2b}$$
But Wolfram gives the integral out as:
$$\int_{-\infty}^{\infty} e^{-2b x^2} \, dx= \frac{\sqrt\frac{\pi}{2}}{\sqrt{b}}, Re[b] \gt 0$$
Which has $b$ under the radical sign and a factor of $\sqrt{\frac{1}{2}}$ on the numerator.