0

Quick question - if $A$ and $B$ are independent continuous random variables, does that imply $A$ and $\cos B$ are also independent?

Alex M.
  • 35,207
Arron
  • 109

1 Answers1

0

You only need to use this lemma in the case $f=id_\mathbb R,\ g=\cos(\bullet)$.

If $A$, $B$ are independent random variables and $f$, $g$ are borelian functions, then $f(A)$ and $f(B)$ are independent.

Indeed, let $E, F$ borel sets. Then, $$P(f(A)\in E\,\wedge\, g(B)\in F)=P(A\in f^{-1}(E)\,\wedge\, B\in g^{-1}(F))=\\=P(A\in f^{-1}(E))\cdot P(B\in g^{-1}(F))=P(f(A)\in E)\cdot P(g(B)\in F)$$