2

How to compute $\lim\limits_{x \to 0} \frac{e^x-1}{x}$ without using derivatives? Every method I can think of gives me some indeterminate form.

Alex M.
  • 35,207

3 Answers3

4

Set $\ e^x-1=y, $ so $\ x=\ln(1+y)$ and $\ y\to0$ for $\ x\to0$

Now you have: $$\ \lim_{x\to0}\frac{e^x-1}{x}=\lim_{y\to0}\frac{y}{\ln(1+y)}=\lim_{y\to0}\frac{1}{\frac{\ln(1+y)}{y}}=\lim_{y\to0}\frac{1}{\ln(1+y)^{\frac{1}{y}}}$$

Putting $\ \frac{1}{y}=t,$ for $\ y\to0, t\to\infty$ , so you have: $$\ \lim_{t\to\infty}\frac{1}{\ln(1+\frac{1}{t})^t}=\frac{1}{\ln(e)}=1$$

By definition of $\ e$.

Mosk
  • 1,630
1

Hint:

Take $x=\dfrac1k$ and use the definition of $e$:

$$\lim_{x\to0}\frac{e^x-1}x=\lim_{k\to\infty}k(e^{1/k}-1)=\lim_{k\to\infty}k\left(\lim_{nk\to\infty}\left(1+\frac1{nk}\right)^{nk/k}-1\right).$$

By the Binomial theorem, the inner limit expands as

$$1+\frac n{nk}+\frac{n(n-1)}{2n^2k^2}+\frac{n(n-1)(n-2)}{3!n^3k^3}\cdots,$$ which is bounded above by $$1+\frac1k+\frac1{2k^2}+\frac1{3!k^3}\cdots$$

Then $$1<k(e^{1/k}-1)<1+\frac1{2k}+\frac1{3!k^2}\cdots$$

0

Hint: use the Taylor expansion for $e^x$ and cancel out the x in the denominator and then put x =0, to get 1 as the answer.

Nikunj
  • 6,160