Consider, for fixed $s$, the function
$$ g_s(\tau) = \exp(\tau + s)\sinh \tau $$
we have
$$ g_s'(\tau) = \exp(\tau +s)(\sinh\tau + \cosh\tau) = \exp(2\tau + s)$$
Hence, $g_s$ is monotone, therefore we have by substitution for $\phi \in C_c^\infty(\def\R{\mathbf R}\R)$:
\begin{align*}
\int_\R f_1(s,\tau)\phi(\tau)\, d\tau
&= \int_\R \delta\bigl(g_s(\tau)\bigr)\phi(\tau)\, d\tau\\
&= \int_{-\exp(s)/2}^\infty \delta(x)\phi\bigl(g_s^{-1}(x)\bigr)\, g_s^{-1}{}'(x)\, dx\\
&= \phi\bigl(g_s^{-1}(0)\bigr)g_s^{-1}{}'(0)
\end{align*}
Now, as $g_s(0) = 0$, we have $g_s^{-1}(0) = 0$ and by the rule for the derivative of the inverse, we have
$$ g_s^{-1}{}'(0) = \frac 1{g_s'(0)} = \frac 1{\exp(s)} $$
Hence, we may continue
\begin{align*}
\int_\R f_1(s,\tau)\phi(\tau)\, d\tau
&= \phi\bigl(g_s^{-1}(0)\bigr)g_s^{-1}{}'(0) \\
&= \phi(0) \exp(-s)\\
&= \int_\R \delta(\tau)\exp(-s)\phi(\tau)\, d\tau
\end{align*}
That is,
$$ f_1(s,\tau) = \delta(\tau)\exp(-s). $$