If one wants to use the squeeze theorem, then we can proceed as follows.
First, We define
$$e=\lim_{n\to \infty}\left(1+\frac1n\right)^n \tag 1$$
Then, we note that
$$\left(1-\frac1n\right)\left(1+\frac1n\right)=\left(1-\frac{1}{n^2}\right)<1\implies \left(1-\frac1n\right)^n <\frac{1}{\left(1+\frac1n\right)^n } \tag 2$$
Also, using Bernoulli's Theorem we have
$$\left(1-\frac{1}{n^2}\right)^n\ge 1-\frac1n\implies \left(1-\frac1n\right)^n \ge \frac{1-\frac1n}{\left(1+\frac1n\right)^n} \tag 3$$
Putting $(2)$ and $(3)$ together reveals that
$$\frac{1-\frac1n}{\left(1+\frac1n\right)^n} \le \left(1-\frac1n\right)^n \le \frac{1}{\left(1+\frac1n\right)^n }$$
whence taking the limit as $n\to \infty$, using $(1)$ along with the squeeze theorem provides the anticipated result
$$\lim_{n\to \infty}\left(1-\frac1n\right)^n=e^{-1}$$