$\rm x^4-18\,x^2+49\:$ will be the minimal polynomial, unless $\rm\:\sqrt{9-4\sqrt{2}}\:$ denests to $\rm\:a + b\sqrt{2}.\:$
This can be tested by a radical denesting formula that I discovered as a teenager.
Simple Denesting Rule $\rm\ \ \ \color{blue}{subtract\ out}\ \sqrt{norm}\:,\ \ then\ \ \color{brown}{divide\ out}\ \sqrt{trace} $
Recall $\rm\: w = a + b\sqrt{n}\: $ has norm $\rm =\: w\:\cdot\: w' = (a + b\sqrt{n})\ \cdot\: (a - b\sqrt{n})\ =\: a^2 - n\: b^2 $
and, furthermore, $\rm\:w\:$ has trace $\rm\: =\: w+w' = (a + b\sqrt{n}) + (a - b\sqrt{n})\: =\: 2\:a$
Here $\:9-4\sqrt{2}\:$ has norm $= 49.\:$ $\rm\ \: \color{blue}{subtracting\ out}\ \sqrt{norm}\ = 7\ $ yields $\ 2-4\sqrt{2}\:$
and this has $\rm\ \sqrt{trace}\: =\: 2,\ \ so,\ \ \ \color{brown}{dividing\ it\ out}\ $ of this yields the sqrt: $\:1-2\sqrt{2}.$
Checking we have
$\ \smash[t]{\displaystyle \left(1-2\sqrt{2}\right)^2 =\ 1+8 -4\sqrt{-3}\ =\ 9-4 \sqrt{2}}.$
See this answer for general radical denesting algorithms.