Let $f\in \mathcal R[0,1]$ , and $g:\mathbb R \to \mathbb R $ is continuous and periodic with period $1$ . Then is it true that
$\lim_{n \to \infty}\int_0 ^1 f(x)g(nx)dx=\Big(\int_0^1f(x)dx\Big)\Big(\int_0^1 g(x)dx\Big)$ ?
Let $f\in \mathcal R[0,1]$ , and $g:\mathbb R \to \mathbb R $ is continuous and periodic with period $1$ . Then is it true that
$\lim_{n \to \infty}\int_0 ^1 f(x)g(nx)dx=\Big(\int_0^1f(x)dx\Big)\Big(\int_0^1 g(x)dx\Big)$ ?
Put $\displaystyle u_n=\int_0^1f(x)g(nx)dx$. We have by the change of variable $u=nx$: $$u_n=\int_0^n f(\frac{u}{n})g(u)\frac{du}{n}=\frac{1}{n}\sum_{k=0}^{n-1}\int_k^{k+1}f(\frac{u}{n})g(u)du$$
But as $g$ has period $1$: $$\int_k^{k+1}f(\frac{u}{n})g(u)du=\int_0^1f(\frac{t+k}{n})g(t+k)dt=\int_0^1f(\frac{t+k}{n})g(t)dt$$ Put $\displaystyle T_n(t)=\frac{1}{n}\sum_{k=0}^{n-1}f(\frac{t+k}{n})$. We have hence $\displaystyle u_n=\int_0^1 T_n(t)g(t)dt$. Now $T_n(t)$ is a Riemann sum for $f$ (On $\displaystyle I_k=[\frac{k}{n},\frac{k+1}{n}]$, we have $ {\rm Inf}_{u\in I_k}f(u)\leq f(\frac{t+k}{n})\leq {\rm Max}_{u\in I_k}(f(u))$). Hence $\displaystyle T_n(t)\to L=\int_0^1 f(t)dt$. Now there exists $M$ such that $|f(u)|\leq M$ for all $u$, hence we get $\displaystyle |T_n(t)g(t)|\leq M|g(t)|$, and by the convergence dominated theorem, we get $\displaystyle u_n\to \int_0^1Lg(t)dt$, and we are done.