How can I simplify this summation $$\sum_{i=1}^\infty \left[1-\sum_{n=0}^{i-1}(-1)^n \frac{a^n}{n!} \left. \frac{d^n}{dt^n} f(t)\right|_{t=a} \right] $$
if $f(t)$ is equal to $\left(\dfrac{b}{t+b}\right)^2$
I thought about using taylor series where $f(x)=f(c)+f'(c)(x-c)+f''(b)(x-c)^2/2!+\cdots.$ Now taking $x=c-a$ then $f(c-a)=f(c)-a.f'(c)+f''(c)a^2/2!-\cdots+.$
An update: from the cauchy integeal $$f(z)=\sum_{n=0}^\infty (z-z_0)^n \frac{f^{(n)}(z_0)}{n!}$$ then taking $z_0=a$ and $z=0$ $$f(0)=\sum_{n=0}^\infty (-1)^n a^n \frac{f^{(n)}(a)}{n!}$$