Let's look at the complex valued function ($a<1$, so the function goes to zero as $|z|\rightarrow \infty$)
$$
f(z,a)=\frac{z^a}{z^2+2z+2} \quad (1)
$$
Furthermore note that
$$\partial_af(z,a)|_{a=0}= \frac{\log(z)}{z^2+2z+2} \quad (2)$$
Equating this expression at real positiv $x$ will give us the original integrand.
Now, let's integrate (1) around a contour in the complex plane, which looks like a keyhole with slit on the positive real axis. We get, applying the residue theorem
$$
\oint f(z,a) dz = \lim_{R \rightarrow \infty}\int_{C_R}f(z,a)dz+\lim_{\epsilon\rightarrow 0}\int_{C_\epsilon}f(z,a)dz+\int_0^{\infty}f(x+i\delta,a)dx+\int_{\infty}^0f(x-i\delta,a)dx=2\pi i(\text{res}(z=z_+)+\text{res}(z=z_-))
$$
where $z_{\pm}=-1\pm i$ denotes the zeros of the denominator of $f(z,a)$ ,$C_R$ is a big circle in the complex plane terminating at the branch cut and $C_{\epsilon}$ is a small semicircle around the origin (branch point).
Note that the first two integrals will vanish after taking the limits (left as excersise).
Our choice of contour implies the following definition of the complex logarithm ($x>0$):
$$
\lim_{\delta\rightarrow 0_+}\log(x+i\delta)=\log(x), \quad
\lim_{\delta\rightarrow 0_+}\log(x-i\delta)=\log(x)+2 \pi i
$$
implying
$$
\oint f(z,a) dz =\\(1-e^{ 2\pi i a})\int_{0}^{\infty}f(x,a)dx=2\pi i(\text{res}(z=z_+)+\text{res}(z=z_-)) \quad (3)
$$
Calculating the residues is quiet easy if one is careful with the argument of $z^a$
$$
\text{res}(z=z_+)=-\frac{(\sqrt{2})^{a}e^{3\pi i a /4}}{2 i}, \quad
\text{res}(z=z_-)=\frac{(\sqrt{2})^{a}e^{5\pi i a/4}}{2 i}
$$
and (3) becomes
$$
\int_{0}^{\infty}f(x,a)dx= \pi (\sqrt{2})^a \frac{\sin(\pi a /4)}{\sin(a \pi)}
$$
Furthermore (using (2))
$$I= \partial_a \int_{0}^{\infty}f(x,a)dx\big|_{a=0}=\frac{\pi}{8}\log(2)$$
is the integral inquestion.
Appendix
As a bonus we can obtain generic integrals of the type
$$
I(m,a)=\int_0^{\infty}dx\frac{x^a \log^m(x)}{x^2+2x+2}
$$
by just observing
$$
I(m,a)=\partial_m\int_0^{\infty}dx\frac{ x^a }{x^2+2x+2}
$$
and use the results above