Problem: Let $X$ be normed space. If on every two dimensional subspace $Y$ of $X$, there is an inner product $\langle \cdot,\cdot\rangle_Y$ such that $\langle y,y\rangle_Y=\|y\|^2$ for all $y\in Y$. Then there is an inner product $\langle \cdot,\cdot\rangle$ on X such that $\langle x,x\rangle =\|x\|^2$ for all $x \in X$.
My attempt:
Fix any $y_0 \in Y$
Define $f: Y \to \mathbb{C}$
$f(y)=\langle y,y_0\rangle, y\in Y$
Clearly, $f$ is bounded linear functional.
Using Hahn Banach Extension Theorem,
$\exists g: X \to \mathbb{C} \ni g|_Y =f$ and $\|g\|=\|f\|$
But I am not able to define an inner product using $g$
Can anyone help me out with this?
Is this approach ok?
$\newcommand{\Brak}[1]{\langle #1\rangle}$
will give better spacing than the binary operators<, >
. :) – Andrew D. Hwang Nov 07 '15 at 10:42