A little late, but here is yet another solution not shown previously.
I will first show that
$$\int_0^1 x \ln\left(\Gamma(x)\right)\,dx=\frac{1}{4} \ln \frac{2 \pi}{A^4} \tag{1}$$
And then from $(1)$ derive the desired result.
Recall Kummer´s fourier expansion for LogGamma $0<x<1$
$$\ln\left(\Gamma(x)\right)=\frac{\ln\left(2 \pi\right)}{2}+ \sum_{k=1}^{\infty}\frac{1}{2k}\cos\left(2 \pi k x\right) + \sum_{k=1}^{\infty}\frac{\gamma+\ln\left(2 \pi k\right)}{ \pi k}\sin\left(2 \pi k x \right) \tag{2}$$
Then, if we plug $(2)$ in $(1)$
$$
\begin{aligned}
\int_0^1 x \ln\left(\Gamma(x)\right)\,dx&=\frac{\ln 2 \pi}{2}\int_0^1 x\,dx+ \sum_{k=1}^{\infty}\frac{1}{2k}\int_0^1 x \cos\left(2 \pi k x\right)\,dx + \sum_{k=1}^{\infty}\frac{\gamma+\ln\left(2 \pi k\right)}{ \pi k}\int_0^1 x \sin\left(2 \pi k x \right)\,dx\\
&=\frac{\ln 2 \pi}{4}+ \sum_{k=1}^{\infty}\frac{\gamma+\ln\left(2 \pi k\right)}{ \pi k}\left(-\frac{1}{2 \pi k} \right)\\
&=\frac{\ln 2 \pi}{4}-\frac{\gamma}{2 \pi^2}\sum_{k=1}^{\infty}\frac{1}{k^2}-\frac{1}{2\pi^2}\sum_{k=1}^{\infty}\frac{\ln\left(2 \pi k\right)}{k^2}\\
&=\frac{\ln 2 \pi}{4}-\frac{\gamma}{12}-\frac{\ln 2 \pi}{2\pi^2}\sum_{k=1}^{\infty}\frac{1}{k^2}-\frac{1}{2\pi^2}\sum_{k=1}^{\infty}\frac{\ln k}{k^2}\\
&=\frac{\ln 2 \pi}{4}-\frac{\gamma}{12}-\frac{\ln 2 \pi}{12}-\frac{1}{2\pi^2}\sum_{k=1}^{\infty}\frac{\ln k}{k^2}\\
&=\frac{\ln 2 \pi}{6}-\frac{\gamma}{12}+\frac{1}{2\pi^2}\zeta^\prime(2)\\
&=\frac{\ln 2 \pi}{6}-\frac{\gamma}{12}+\frac{\zeta(2)}{2\pi^2} \left(-12 \ln A + \gamma + \ln2 \pi \right)\\
&=\frac{\ln 2 \pi}{6}- \ln A +\frac{\ln2 \pi}{12} \\
&=\frac{\ln 2 \pi}{4}- \ln A \\
&=\frac{1}{4} \ln \frac{2 \pi}{A^4} \qquad \blacksquare\\
\end{aligned}
$$
We used that $\zeta^\prime(2) =\zeta(2)\left(-12 \ln A + \gamma + \ln2 \pi \right)$
On the other hand, if we integrate by parts the L.H.S. of $(1)$ we have that ($du=\psi(x)$ and $v=\frac{x^2}{2}$):
$$\int_0^1 x^2 \psi(x)\,dx =-2\int_0^1 x \ln\left(\Gamma(x)\right)\,dx\tag{3}$$
Which imiediatly gives the desired result
$$\boxed{\int_0^1 x^2 \psi(x) \, dx = \ln\left(\dfrac{A^2}{\sqrt{2\pi}} \right)}$$
Appendix
$$
\begin{aligned}
\int_0^1 x \cos(2 \pi kx)\,dx&=\frac{1}{(2 \pi k)^2}\int_0^{2 \pi k} x \cos(x)\,dx \qquad (2 \pi kx \to x)\\
&=\frac{1}{(2 \pi k)^2}\left(x\sin(x)\Big|_0^{2 \pi k} -\int_0^{2 \pi k}\sin(x)\,dx\right)\\
&=\frac{1}{(2 \pi k)^2}\left(-\cos(x)\Big|_0^{2 \pi k}\right)\\
&=\frac{1}{(2 \pi k)^2}\left(-1+1\right)\\
&=0 \qquad \blacksquare
\end{aligned}
$$
$$
\begin{aligned}
\int_0^1 x \sin(2 \pi kx)\,dx&=\frac{1}{(2 \pi k)^2}\int_0^{2 \pi k} x \sin(x)\,dx \qquad (2 \pi kx \to x)\\
&=\frac{1}{(2 \pi k)^2}\left(-x\cos(x)\Big|_0^{2 \pi k} +\int_0^{2 \pi k}\cos(x)\,dx\right)\\
&=\frac{1}{(2 \pi k)^2}\left(-2 \pi k\right)\\
&=-\frac{1}{2 \pi k}\qquad \blacksquare
\end{aligned}
$$