Now, I know this to be correct:
$$\begin{align*} \lim_{n \rightarrow\infty} \left(\frac 1{n^2}+\frac 2{n^2}+\ldots+\frac n{n^2}\right)&=\lim_{n \rightarrow\infty} \left[\frac 1{n^2} \left(\frac n2\right)(1+n)\right]\\ &=\lim_{n \rightarrow\infty} \frac {1+n}{2n}\\ &=\frac 12\;. \end{align*}$$
But what is wrong with the following reasoning?
$$\begin{align*} \lim_{n \rightarrow\infty} \left(\frac 1{n^2}+\frac 2{n^2}+\ldots+\frac n{n^2}\right)&=\lim_{n \rightarrow\infty} \frac 1{n^2} + \displaystyle \lim_{n \rightarrow\infty} \frac 2{n^2} +...+ \displaystyle \lim_{n \rightarrow\infty} \frac n{n^2}\\\\ &=0+0+\ldots+0\\\\ &=0\;? \end{align*}$$