Show $h(x)=1/(x^2+1)$ satisfies the $\epsilon-\delta$ definition for uniform continuity on $\mathbb{R}$
Attampt:
Let $\epsilon>0$, there exists a $\delta=\epsilon/2$ such that $|x-y|<\delta$ where $x,y\in\mathbb{R}$.
$\begin{align*}|h(x)-h(y)|&=\left|\frac{1}{1+x^2}-\frac{1}{1+y^2}\right|\\&=\left|\frac{x^2-y^2}{(1+x^2)(1+y^2)}\right|\\&\leq|x-y|\left|\frac{x+y}{(1+x^2)(1+y^2)}\right| \\&<|x-y|\cdot\left|\frac{1+x^2+1+y^2}{(1+x^2)(1+y^2)}\right|\\&<|x-y||1+1|\\&<2\delta<\epsilon\end{align*}$
I found the same the question Show $1/(1+ x^2)$ is uniformly continuous on $\Bbb R$. My problem is: I asked my instructor that I need to break the question into three cases $I_1=[-1,1],I_2=(-\infty,-1],I_3=[1,\infty)$ because $x+y<1+x^2+1+y^2$ is different in these three intervals,but for me $x+y<1+x^2+1+y^2$ is true for the entire real line. Can someone tell me why? Thanks in advanced.