Given the square of the nome $q=e^{2i\pi\tau}$ and ramanujan theta function $f(a,b)=\sum_{k=-\infty}^{\infty}a^{k(k+1)/2}b^{k(k-1)/2}$ with $|q|\lt1$, define,
$$\begin{aligned}M(q)=\cfrac{1-q^3}{1-q^2+\cfrac{q^2(1-q^{-1})(1-q^5)}{1-q^6+\cfrac{q^4(1-q)(1-q^7)}{1-q^{10}+\cfrac{q^6(1-q^3)(1-q^{9})}{1-q^{14}+\ddots}}}}\overset{\color{blue}{?}}=\prod_{n=1}^\infty\frac{(1-q^{8n-3})(1-q^{8n-5})}{(1-q^{8n-1})(1-q^{8n-7})}\\[1.5mm]&\end{aligned}$$ $$=\frac{f(-q^3,-q^5)}{f(-q,-q^7)}$$ and $$\begin{aligned}N(q)=\cfrac{1-q^3}{1+q^2-\cfrac{q^2(1+q^{-1})(1+q^5)}{1+q^6+\cfrac{q^4(1-q)(1-q^{7})}{1+q^{10}-\cfrac{q^6(1+q^3)(1+q^{9})}{1+q^{14}+\ddots}}}}\overset{\color{blue}{?}}=\prod_{n=1}^\infty\frac{(1-q^{8n-3})(1-q^{8n-5})}{(1-q^{8n-1})(1-q^{8n-7})}\\[1.5mm]&\end{aligned}$$ $$=\frac{f(-q^3,-q^5)}{f(-q,-q^7)}$$
Q: How do we prove that the two q-continued fractions are equal to the q-products such that the continued fractions are equivalent $M(q)=N(q)$?