3

Is there a solution for the following integral:

$$ \int\frac{\exp(-b(a+x)^{3/2})}{\sqrt{x}} dx $$

where $a$ and $b$ are constants. If it is not, what is the best approximation? Especially in the limit as $b\to\infty$.

Harry Peter
  • 7,819
user287139
  • 31
  • 2

2 Answers2

2

If $a=0$, there is an analytical solution for the general integral $$\int \frac{\exp(-p\, x^q)}{x^r}dx=-\frac{x^{1-r} \left(p x^q\right)^{\frac{r-1}{q}} }{q}\,\Gamma \left(\frac{1-r}{q},p x^q\right)$$ For $a\neq0$, I am quite skeptical that we could find any.

0

Hint:

$\int\dfrac{e^{-b(a+x)^\frac{3}{2}}}{\sqrt{x}}dx$

$=\int2e^{-b(x+a)^\frac{3}{2}}d(\sqrt{x})$

$=\int2e^{-b(u^2+a)^\frac{3}{2}}du$ $(\text{Let}~u=x^2)$

$=\int\sum\limits_{n=0}^\infty\dfrac{2b^{2n}(u^2+a)^{3n}}{(2n)!}du-\int\sum\limits_{n=0}^\infty\dfrac{2b^{2n+1}(u^2+a)^{3n+\frac{1}{2}}}{(2n+1)!}du$

Harry Peter
  • 7,819