Find the sum $\sum_{j=0}^{n}j$
for all $n=0,1,2,3,\dots$.
How do I find/evaluate this sum?
Find the sum $\sum_{j=0}^{n}j$
for all $n=0,1,2,3,\dots$.
How do I find/evaluate this sum?
HINT
Consider: $$S = \sum_{j=0}^n x^j = \frac{x^{n+1} - 1}{x - 1}$$ $$\frac {d}{dx}S = \sum_{j=0}^njx^{j-1} = \frac{nx^{n+1} - (n+1)x^n + 1}{(x-1)^2}$$
If we take the limit as $x \to 1$, the left hand side becomes $\sum_{j=0}^n j$, and we can evaluate the RHS to find a function of $n$ $$\lim_{x\to 1}\frac{nx^{n+1} - (n+1)x^n + 1}{(x-1)^2} = \lim_{x\to1}\frac{n(n+1)x^n - (n+1)nx^{n-1}}{2(x-1)}$$ $$= \lim_{x\to1}\frac{n(n+1)x^n - (n+1)nx^{n-1}}{2(x-1)} = \lim_{x\to1}x^{n-1}\frac{(n+1)n}{2} = \frac{(n+1)n}{2}$$
Here is a high school argument which I love more! :)
Assume $n$ is an odd positive integer then
$$\eqalign{ & \sum\limits_{j = 0}^n j = 0 + 1 + 2 + ... + (n - 2) + (n - 1) + n \cr & \,\,\,\,\,\,\,\,\,\,\, = \left( {0 + n} \right) + \left( {1 + \left( {n - 1} \right)} \right) + \left( {2 + \left( {n - 2} \right)} \right) + ... \cr & \,\,\,\,\,\,\,\,\,\,\, = \underbrace {n + n + n + ...}_{{{n + 1} \over 2}} \cr & \,\,\,\,\,\,\,\,\,\,\, = \left( {{{n + 1} \over 2}} \right)n = {{n(n + 1)} \over 2} \cr} $$
you can argue most similarly when $n$ is an even number! I will leave this case as an exercise for you. :)