This is only Q&A.
Preview
Trace class operators decompose.
So proofs reduce to Hilbert-Schmidt!
Problem
Given a Hilbert Space $\mathcal{H}$.
For the trace class: $$\mathcal{B}_\textrm{Tr}(\mathcal{H})=\mathcal{B}_\textrm{HS}(\mathcal{H})^*\mathcal{B}_\textrm{HS}(\mathcal{H})\subsetneq\mathcal{B}_\textrm{HS}(\mathcal{H})$$ Reminding classes:* $$\mathcal{B}_\textrm{Tr}(\mathcal{H}):=\{A\in\mathcal{B}(\mathcal{H}):\operatorname{Tr}|A|<\infty\}$$ $$\mathcal{B}_\textrm{HS}(\mathcal{H}):=\{A\in\mathcal{B}(\mathcal{H}):\|A\|_\textrm{HS}<\infty\}$$ How can I check this?
*Hilbert-Schmidt Norm: $\|\cdot\|_\textrm{HS}$
Motivation
Relations on trace class operators are complex.
This series aims to enlighten these by reduction.
Hilbert-Schmidt operators become canonical.
Proofs do not require compact operators.