Let $n>1$ be an integer, $k$ be an integer such that gcd(k,n)=1 and $w\neq 1$ be an $n^{\text{th}}$ root of unity. Show that, $$1+w^k+w^{2k}+\ldots+w^{(n-1)k}=0$$ I tried this problem in this way let $w=e^{\frac{2\pi ip}{n}}$, where $1\leq p\leq n-1$. If $w^{k}\not=1$ then we have done because\ $$1+w^k+w^{2k}+\ldots+w^{(n-1)k}=\frac{1-w^{nk}}{1-w^{k}}.$$ Now using the condition $gcd(n,k)$ how to show that $w^{k}\not=1.$
Asked
Active
Viewed 91 times
0
-
If $a^k-1=0, a^n-1=0$ Using http://math.stackexchange.com/questions/7473/prove-that-gcdan-1-am-1-a-gcdn-m-1, $$a^{(k,n)}-1=0$$ – lab bhattacharjee Oct 31 '15 at 12:26
-
@ThomasAndrews You're right. I am deleting my comments. – SchrodingersCat Oct 31 '15 at 12:39
1 Answers
0
If $w^k=1$ and $w^n=1$ and $\gcd(n,k)=1$ impliy that $w=1$ by Bézout's identity.
Indeed, if $ak+bn=1, \enspace(a,bv\in\mathbf Z)$, then $$w=w^{ak+bn}=(w^k)^a\cdot(w^n)^b=1^a\cdot1^b=1.$$

Bernard
- 175,478