$$\left(1 + 1/\sqrt{n}\right)^n > \sqrt{n}$$
I'm trying to use Bernoulli's inequality
So $\left(1 + 1/\sqrt{n}\right)^n \ge 1 + n/\sqrt{n}$, but I'm not sure what to do from there.
Could I say that $1 + n/\sqrt{n} > \sqrt{n}$ for all natural numbers so the above statement holds true?