0

How one can prove $$|\{x\in[0,2\pi] : \lim_{n\rightarrow \infty} e^{inx} \ \ \ \text{exists}\}| = 0$$ where $|\cdot|$ denotes the Lebesgue measure. Any hints please?

1 Answers1

1

Suppose $\{e^{inx}\}$ converges. Then what is $$ \lim_{n\to\infty}\bigl(e^{i(n+1)x}-e^{inx}\bigr)? $$ What does it tell you about $x$?