The integral does not converge for $d = -\frac{1}{2}$, but it does converge for all the other $d$. Let $d \in (-\frac{1}{2},\frac{1}{2}]$. Since the integrand is an even function, you can write your integral as
$$2\int_0^{1/2}|\sin(\pi f)|^{2d}\, df.$$
Via the $u$-substitution $u = \pi f$, we get
$$ 2\int_0^{\pi/2} |\sin u|^{2d} \frac{du}{\pi} = \frac{2}{\pi}\int_0^{\pi/2}\sin^{2d}(u)\, du = \frac{2}{\pi}\frac{\Gamma\left(d + \frac{1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma(d + 1)},$$
using the identity
$$\int_0^{\pi/2} \sin^{2x-1}(u)\cos^{2y-1}(u)\, du = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)},\quad x,y > 0.$$
Since $\Gamma(\tfrac{1}{2}) = \sqrt{\pi}$,
$$\frac{2}{\pi}\frac{\Gamma\left(d + \frac{1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma(d + 1)} = \frac{2}{\sqrt{\pi}}\frac{\Gamma\left(d + \frac{1}{2}\right)}{\Gamma(d + 1)}.$$
So for $d\in (-\frac{1}{2},\frac{1}{2}]$,
$$\int_{-1/2}^{1/2}|\sin(\pi f)|^{2d}\, df = \frac{2}{\sqrt{\pi}} \frac{\Gamma\left(d + \frac{1}{2}\right)}{\Gamma(d + 1)}.$$