Notice, $$\lim_{n\to \infty}\sum_{k=1}^{\infty}\frac{n}{n^2+k^2}$$
$$=\lim_{n\to \infty}\sum_{k=1}^{\infty}\frac{n}{n^2\left(1+\left(\frac{k}{n}\right)^2\right)}$$
$$=\lim_{n\to \infty}\sum_{k=1}^{\infty}\frac{\left(\frac{1}{n}\right)}{1+\left(\frac{k}{n}\right)^2}$$
let $\frac{k}{n}=u$, $\frac{1}{n}=du$ as $n\to \infty$
upper limit of $u$ at $r=n$, $\lim_{n\to \infty}\frac{r}{n}=\lim_{n\to \infty}\frac{n}{n}=1$
lower limit of $u$ at $r=1$, $\lim_{n\to \infty}\frac{r}{n}=\lim_{n\to \infty}\frac{1}{n}=0$
using integration with proper limits,
$$\lim_{n\to \infty}\sum_{k=1}^{\infty}\frac{\left(\frac{1}{n}\right)}{1+\left(\frac{k}{n}\right)^2}=\int_{0}^{1}\frac{du}{1+u^2}$$
$$=[\tan^{-1}(u)]_{0}^{1}=\tan^{-1}(1)-\tan^{-1}(0)=\color{red}{\frac{\pi}{4}}$$