Evaluate the following limit : $$\lim_{n\to \infty}\left[(n+1)\int_0^1x^n\ln(1+x)\,dx\right].$$
We have , $$\lim_{n\to \infty}\left[(n+1)\int_0^1x^n\ln(1+x)\,dx\right]$$ $$=\lim_{n\to \infty}\int_0^1\ln(1+x)\,d(x^{n+1})$$Now put , $x^{n+1}=y$. Then , $$=\lim_{n\to \infty}\int_0^1\ln\left(1+y^{\frac{1}{n+1}}\right)\,dy$$Let , $\displaystyle g_n(y)=\ln\left(1+y^{\frac{1}{n+1}}\right)$.
Edit :
Then , $\displaystyle g(y)=\lim_ng_n(y)=\ln 2$ in $(0,1]$.
Now , $\displaystyle \sup_{x\in (0,1]}|g_n(y)-g(y)|=\sup_{x\in (0,1]}\ln\left(\frac{1+y^{\frac{1}{n+1}}}{2}\right)=0$. ( As , $y^{\frac{1}{n+1}}$ is monotone increasing function in $(0,1]$ , so $\ln\left(\frac{1+y^{\frac{1}{n+1}}}{2}\right)$ is also monotone increasing in $(0,1]$ and so it attains its maximum value at $y=1$ . ) So , $\{g_n(y)\}$ converges uniformly to $\ln 2$.
Then ,we can show that $g_n(y)$ converges uniformly to $\ln 2$ in $(0,1]$ and hence the given limit is $\ln 2$.
Is this correct ? Does there any other technique to evaluate the limit ?