How can I prove that $\sqrt[n]{n} > \sqrt[n+1]{n+1}$ for $n \in \mathbb{N} \setminus \{ 1,2 \}$ ?
My approach:
Step 1:
$n_0 := 3 \qquad \sqrt[3]{3} > \sqrt[4]{4}$
which is true.
Step 2:
$\sqrt[n]{n} > \sqrt[n+1]{n+1}$ is true for any $n \in \mathbb{N} \setminus \{ 1,2 \}$
Step 3:
$A(n) \rightarrow A(n+1)$ for any $n \in \mathbb{N}_{>3}$
$\sqrt[n+1]{n+1} > ... > A(n+1)$
And here i don't know how to proceed.
Can someone give me a tip?