- Is it correct to say that $P(A) = 1 \to P(A|B) = 1$?
Precisely, consider a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $A \in \mathscr{F}$ and let $B_1, B_2, ... \in \mathscr{F}$ s.t. $\bigcup_{i \in \mathbb{N}} B_i = \Omega$ and $B_q \cap B_j = \emptyset \ \forall q \ne j$. Suppose $P(A) = 1$. Does this mean that $\forall i \in \mathbb{N}, P(A|B_i) = 1$?
What I tried:
Suppose $\exists m \in \mathbb N$ s.t. $P(A | B_m) < 1$.
By Bayes' Theorem, we have
$$P(A) = 1 = \sum_{i \in \mathbb{N}} P(A | B_i)P(B_i)$$
$$\to 1 = \sum_{i \in \mathbb{N}} P(A | B_i)P(B_i)$$
$$= \sum_{i=1}^{m-1} P(A | B_i)P(B_i) + P(A | B_m)P(B_m) + \sum_{i=m+1}^{\infty} P(A | B_i)P(B_i)$$
$$= \sum_{i=1}^{m-1} P(B_i) + P(A | B_m)P(B_m) + \sum_{i=m+1}^{\infty} P(B_i)$$
$$= \sum_{i=1}^{\infty} P(B_i) - P(B_m) + P(A | B_m)P(B_m) \ (*)$$
$$= 1 - P(B_m) + P(A | B_m)P(B_m)$$
$$= 1 - P(B_m) + P(A | B_m)P(B_m)$$
$$\to 1 - 1 + P(B_m) = P(A | B_m)P(B_m)$$
$$\to P(B_m) = P(A | B_m)P(B_m)$$
$$\to 1 = P(A | B_m) ↯ \ QED?$$
$(*)$
$$1 = P(\Omega) = P(\bigcup_{i \in \mathbb{N}} B_i) = \sum_{i \in \mathbb{N}} P(B_i)$$
Edit: The final step is supposed to be $1 = P(A | B_m)$ or $P(B_m) = 0$. Hence, it is incorrect to say $P(A) = 1 \to P(A|B) = 1$. I guess it holds if $P(B) > 0$.
- $P(A) < 1 \to P(A|B) = P(A)$ ?
Let's say we are given the unconditional probability $P(A) = 1/2$. Does this mean that $\forall i \in \mathbb{N}, P(A|B_i) = 1/2$? That seems to be what is suggested here. Might be interpreting incorrectly.