Can I evaluate: $\sum_{n=0}^{5}{nx^n}$ to get something nicer?
I know I can evaluate:
$\sum_{n=0}^{N-1}{x^n} = (1-x^N)(1-x)^{-1}$ for $x \neq 1$
can I do something similar with the first sum?
Can I evaluate: $\sum_{n=0}^{5}{nx^n}$ to get something nicer?
I know I can evaluate:
$\sum_{n=0}^{N-1}{x^n} = (1-x^N)(1-x)^{-1}$ for $x \neq 1$
can I do something similar with the first sum?
$\textbf{hint}$
$$ x\sum \dfrac{d}{dx}x^{n} = x\dfrac{d}{dx}\sum x^n = \sum nx^n $$