What I tried based on Th2.14f in Rencher and Schaalje
Follow the proof (or directly apply) Theorem 2.14f by replacing $A = X$ and $x = x_{ij}$.
$$
\frac{\partial ln|X|}{\partial X_{ij}}
=
\frac{\partial ln|CDC'|}{\partial X_{ij}}
$$
Since positive definite matrices are symmetric, $X$ has a spectral decomposition: $X = CDC'$ where $C$ is an orthogonal matrix and $D$ is a diagonal matrix whose elements are the eigenvalues of X on the main diagonal and zero otherwise.
\begin{align}
\frac{\partial ln|CC'D|}{\partial X_{ij}}
=&\frac{\partial ln|D|}{\partial X_{ij}}\\
=&\frac{\partial ln(\prod_{i=1}^{n} \lambda_i)}{\partial X_{ij}}\\
=&\frac{\partial ln(\lambda_1\lambda_2...\lambda_n)}{\partial X_{ij}}\\
=&\frac{\partial (ln\lambda_1 + ln\lambda_2 + ... + ln\lambda_n)}{\partial X_{ij}}\\
=&\frac{\partial (\sum_{i=1}^{n} ln\lambda_i)}{\partial X_{ij}}\\
=&\sum_{i=1}^{n} \frac{1}{\lambda_i}
\cdot
\frac{ ( \partial \lambda_i)}{\partial X_{ij}}\\
=&tr(D^{-1} \frac{\partial D}{\partial X_{ij}})\\
\end{align}
where $D^{-1}$ is a diagonal matrix whose elements are the reciprocals of the corresponding elements in D on the main diagonal and zero otherwise.
$$
tr(D^{-1}) = \sum_{i=1}^{n} \frac{1}{\lambda_i} = \sum_{i=1}^{n} D^{-1}_{ii}.
$$
$\frac{\partial D}{\partial X_{ij}}$ is a diagonal matrix whose elements are the partial derivatives of the corresponding elements in $D$ with respect to $X_{ij}$.
$$
tr(\frac{\partial D}{\partial X_{ij}})
= \sum_{i=1}^{n} \frac{ ( \partial \lambda_i)}{\partial X_{ij}}
= \sum_{i=1}^{n} \frac{\partial D}{\partial X_{ij}}_{ii}.
$$
and $\sum_{i=1}^{n} D^{-1}_{ii} \frac{\partial D}{\partial X_{ij}}_{ii} = tr(D^{-1} \frac{\partial D}{\partial X_{ij}}$) since the diagonal matrix $D^{-1} \frac{\partial D}{\partial X_{ij}}$ is the not only the matrix product but also the entrywise product of $D^{-1}$ and $\frac{\partial D}{\partial X_{ij}}$ since they are diagonal matrices.
It remains to prove that $tr(D^{-1} \frac{\partial D}{\partial X_{ij}}) = tr(X^{-1} \frac{\partial X}{\partial X_{ij}}).$
\begin{align}
tr(D^{-1} \frac{\partial D}{\partial X_{ij}})
&=
tr(D^{-1} \frac{\partial D}{\partial X_{ij}} + \frac{\partial CC'}{\partial X_{ij}})
\\
&=
tr(D^{-1} \frac{\partial D}{\partial X_{ij}} + C\frac{\partial C'}{\partial X_{ij}} + C'\frac{\partial C}{\partial X_{ij}})
\\
&=tr(CD^{-1} \frac{\partial D}{\partial X_{ij}}C' + C\frac{\partial C'}{\partial X_{ij}} + CD^{-1}C'\frac{\partial C}{\partial X_{ij}}DC')
\\
&=tr((CD^{-1}C')(C \frac{\partial D}{\partial X_{ij}}C' + CD\frac{\partial C'}{\partial X_{ij}} + CD^{-1}C'\frac{\partial C}{\partial X_{ij}}DC'))
\\
&=tr(CD^{-1}C' [\frac{C\partial (DC')}{\partial X_{ij}} + \frac{\partial C}{\partial X_{ij}}(DC')])\\
&=tr(CD^{-1}C' \frac{\partial (CDC')}{\partial X_{ij}})\\
&=tr(X^{-1} \frac{\partial X}{\partial X_{ij}})\\
&\hspace{10cm}{\it QED}\\
\end{align}
Rencher, Alvin, and G. Bruce Schaalje. "Matrix Algebra." Linear Models in Statistics. Second ed. New Jersey: John Wiley and Sons, Inc., 2008. 5-68. Print.