As part of proving this: Prove $\frac{\partial \rm{ln}|X|}{\partial X} = 2X^{-1} - \rm{diag}(X^{-1})$.
Prove
$$\frac{\partial \ln \lvert X \rvert}{\partial X_{ij}}=\text{tr} \left[X^{-1} \frac{\partial X}{\partial X_{ij}} \right]$$ where $\forall \ p \ \in \ \mathbb{N}, \ X \ \in \ \mathbb{R}^{p \times p}, \ $ X is a positive definite matrix.
Condition: Use adjoint. For no adjoint: Prove $\frac{\partial ln|X|}{\partial X_{ij}}=tr[X^{-1} \frac{\partial X}{\partial X_{ij}}]$ not using adjoint.
Note: just in case any of this notation seems wrong or or something, see matrix cookbook: p.15's (141), p.9's (57) and p.8's (43)