Let $\left(\mathbb{Z},+\right)$ and $\left(\mathbb{Q}^{+},\cdot\right)$ be groups (let the integers be a group with respect to addition and the positive rationals be a group with respect to multiplication). Is there a function $\phi\colon\mathbb{Z}\mapsto\mathbb{Q}^{+}$ such that:
- $\phi(a)=\phi(b) \implies a=b$ (injection)
- $\forall p\in\mathbb{Q}^{+} : \exists a\in\mathbb{Z} : \phi(a)=p$ (surjection)
- $\phi(a+b) = \phi(a)\cdot\phi(b)$ (homomorphism)
? If so, provide an example. If not, disprove.