2

I have already shown that $t_n$ is convergent using the monotonic convergence theorem. Let's say ${s_n}$ converges to $L_1$ and ${t_n}$ converges to $L_2$. How can I show that $L_1$=$L_2$?

  • A sufficient condition that $t_n$ converges to L is that $s_n$ converges to L, even if $s_n$ is not monotonic. However if $s_n$ is not monotonis then $t_n$ may converge even when $s_n$ does not. – DanielWainfleet Oct 22 '15 at 20:50
  • https://math.stackexchange.com/questions/2440333/general-cesaro-lim-limits-n-to-infty-frac1-sum-limitsk-0n-lambda-k – Guy Fsone Jan 01 '18 at 16:35
  • As you know that every bounded monotonic sequence is convergent. And the sequence of means of every convergent sequence is also convergent.

    https://math.stackexchange.com/questions/565288/can-you-please-check-my-cesaro-means-proof

    – MAS Mar 13 '19 at 08:48

3 Answers3

2

Suppose $s_n \to s$ (this is true if $s_n$ are bounded and monotonic). Then $|s_n| \le B$ for some $B$.

Let $\epsilon>0$ and choose $N$ such that $|s_n - s| < {1 \over 2} \epsilon$ for all $n \ge N$. Now choose $N' \ge N$ such that ${2BN \over N'} < {1 \over 2} \epsilon$. Now suppose $n \ge N'$.

Then \begin{eqnarray} |{s_1+\cdots + s_n \over n} - s| &=& |{(s_1-s)+\cdots + (s_n-s) \over n} | \\ &\le& |{(s_1-s)+\cdots + (s_{N-1}-s) \over n} | + |{(s_{N}-s)+\cdots + (s_n-s) \over n} | \\ &\le& {2BN \over N'} + {1 \over 2} \epsilon \\ &<& \epsilon \end{eqnarray}

copper.hat
  • 172,524
1

Hint: Consider

$$t_{n} - L_{1} = \frac{(s_{1} - L_{1}) + (s_{2} - L_{1}) + \dots + (s_{n_0} - L_{1})}{n} + \frac{(s_{n_0} - L_{1}) + \dots + (s_{n} - L_{1})}{n - n_{0}} \frac{n - n_0}{n}$$

user159517
  • 7,816
  • 1
  • 18
  • 43
0

$$s_n-t_n=s_n-\frac1n\sum_{i=1}^n s_i=s_n-\frac{ns_n-\sum_{i=1}^n s_i}n =\frac1n\sum_{i=1}^n (s_n - s_i) $$ $$|s_n-t_n|\le \frac1n\sum_{i=1}^n |s_n - s_i| = \frac1n\sum_{i=1}^N |s_n - s_i| + \frac1n\sum_{i=N+1}^n |s_n - s_i| $$

For any $\epsilon>0$ there is $N>0$, such that for every $n>N$ we have $|s_n - s_i|<\epsilon$ for each $N<i\le n$ (why?). Therefore $$0\le\lim_{n\to\infty} |s_n-t_n|\le \lim_{n\to\infty}\frac1n\sum_{i=1}^N |s_n - s_i| + \frac{n-N}n \epsilon=n\epsilon $$ Take $\epsilon\to0$ to finish the proof.