I have already shown that $t_n$ is convergent using the monotonic convergence theorem. Let's say ${s_n}$ converges to $L_1$ and ${t_n}$ converges to $L_2$. How can I show that $L_1$=$L_2$?
3 Answers
Suppose $s_n \to s$ (this is true if $s_n$ are bounded and monotonic). Then $|s_n| \le B$ for some $B$.
Let $\epsilon>0$ and choose $N$ such that $|s_n - s| < {1 \over 2} \epsilon$ for all $n \ge N$. Now choose $N' \ge N$ such that ${2BN \over N'} < {1 \over 2} \epsilon$. Now suppose $n \ge N'$.
Then \begin{eqnarray} |{s_1+\cdots + s_n \over n} - s| &=& |{(s_1-s)+\cdots + (s_n-s) \over n} | \\ &\le& |{(s_1-s)+\cdots + (s_{N-1}-s) \over n} | + |{(s_{N}-s)+\cdots + (s_n-s) \over n} | \\ &\le& {2BN \over N'} + {1 \over 2} \epsilon \\ &<& \epsilon \end{eqnarray}

- 172,524
Hint: Consider
$$t_{n} - L_{1} = \frac{(s_{1} - L_{1}) + (s_{2} - L_{1}) + \dots + (s_{n_0} - L_{1})}{n} + \frac{(s_{n_0} - L_{1}) + \dots + (s_{n} - L_{1})}{n - n_{0}} \frac{n - n_0}{n}$$

- 7,816
- 1
- 18
- 43
$$s_n-t_n=s_n-\frac1n\sum_{i=1}^n s_i=s_n-\frac{ns_n-\sum_{i=1}^n s_i}n =\frac1n\sum_{i=1}^n (s_n - s_i) $$ $$|s_n-t_n|\le \frac1n\sum_{i=1}^n |s_n - s_i| = \frac1n\sum_{i=1}^N |s_n - s_i| + \frac1n\sum_{i=N+1}^n |s_n - s_i| $$
For any $\epsilon>0$ there is $N>0$, such that for every $n>N$ we have $|s_n - s_i|<\epsilon$ for each $N<i\le n$ (why?). Therefore $$0\le\lim_{n\to\infty} |s_n-t_n|\le \lim_{n\to\infty}\frac1n\sum_{i=1}^N |s_n - s_i| + \frac{n-N}n \epsilon=n\epsilon $$ Take $\epsilon\to0$ to finish the proof.

- 5,728
https://math.stackexchange.com/questions/565288/can-you-please-check-my-cesaro-means-proof
– MAS Mar 13 '19 at 08:48