A rigorous proof can be made using the central limit theorem (CLT), as follows.
Since
$$
\frac{1}{{n!}}\int_0^1 {x^{n - k} (x - 1)^k e^{ - x} \,{\rm d}x} \to 0
$$
as $n \to \infty$, it suffices to consider the integral from $1$ to $\infty$. Let $c>0$ be arbitrary but fixed, and let $X_i$ be as in my previous answer. Define $f_n {(x)} = x^n e^{-x} / \Gamma(n+1)$, $x>0$, and put $n'=n+1$. Then, since $f_n$ is the density of $\sum\nolimits_{i = 1}^{n'} {X_i }$,
$$
\frac{1}{{n!}}\int_1^{n' - c\sqrt {n'} } {x^{n - k} (x - 1)^k e^{ - x} \,{\rm d}x} \leq \int_0^{n' - c\sqrt {n'} } {f_n (x)\,{\rm d}x} = {\rm P}\bigg(\frac{{\sum\nolimits_{i = 1}^{n'} {X_i } - n'}}{{\sqrt {n'} }} \le - c \bigg).
$$
By the CLT, since the $X_i$ have unit mean and unit variance, the probability on the right-hand side tends to $\Phi(-c)$ as $n \to \infty$, where $\Phi$ denotes the distribution function of the standard normal distribution.
Similarly,
$$
\frac{1}{{n!}}\int_{n' + c\sqrt {n'} }^\infty {x^{n - k} (x - 1)^k e^{ - x} \,{\rm d}x} \leq \int_{{n'} + c\sqrt {n'} }^\infty {f_n (x)\,{\rm d}x} = {\rm P}\bigg(\frac{{\sum\nolimits_{i = 1}^{n'} {X_i } - n'}}{{\sqrt {n'} }} > c \bigg),
$$
and, by the CLT, the probability on the right-hand side tends to $1 - \Phi(c)$ as $n \to \infty$.
Next, note that
$$
\bigg(1 - \frac{1}{{n' - c\sqrt {n'} }}\bigg)^k \int_{n' - c\sqrt {n'} }^{n' + c\sqrt {n'} } {f_n (x)\,{\rm d}x} \leq
\frac{1}{{n!}}\int_{n' - c\sqrt {n'} }^{n' + c\sqrt {n'} } {x^{n - k} (x - 1)^k e^{ - x} \,{\rm d}x}
$$
and
$$
\frac{1}{{n!}}\int_{n' - c\sqrt {n'} }^{n' + c\sqrt {n'} } {x^{n - k} (x - 1)^k e^{ - x} \,{\rm d}x} \leq \bigg(1 - \frac{1}{{n' + c\sqrt {n'} }}\bigg)^k \int_{n' - c\sqrt {n'} }^{n' + c\sqrt {n'} } {f_n (x)\,{\rm d}x}.
$$
By the CLT,
$$
\int_{n' - c\sqrt {n'} }^{n' + c\sqrt {n'} } {f_n (x)\,{\rm d}x} = {\rm P}\bigg(-c \leq \frac{{\sum\nolimits_{i = 1}^{n'} {X_i } - n'}}{{\sqrt {n'} }} \leq c \bigg) \to 2 \Phi(c) -1
$$
as $n \to \infty$. Combining it all, and noting that
$$
\bigg(1 - \frac{1}{{n' \pm c\sqrt {n'} }}\bigg)^k = \bigg(1 - \frac{1}{{n' \pm c\sqrt {n'} }}\bigg)^{n(k/n)} \approx e^{ - k/n},
$$
the result follows by choosing $c$ sufficiently large. [Note that first we choose $c$ sufficiently large, then we let $n \to \infty$.]