It seems there are some typesetting errors in this equality.
Suppose we seek to verify the closely related equality
(obtained by a shift by one on the right)
$$(-1)^{n-1} \sum_{k=0}^{n+1} {n+1\choose k} (-2)^k
{n+k-1\choose k}
= \sum_{k=0}^{n-1} {2n-k\choose n-1} {n-1\choose k}.$$
Introduce for the LHS
$${n+k-1\choose k} = {n+k-1\choose n-1} =
\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^n} (1+z)^{n+k-1} \; dz.$$
This yields for the sum
$$(-1)^{n-1} \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^n} (1+z)^{n-1}
\sum_{k=0}^{n+1} {n+1\choose k} (-2)^k (1+z)^k\; dz
\\ = (-1)^{n-1} \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^n} (1+z)^{n-1} (-1-2z)^{n+1} \; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^n} (1+z)^{n-1} (1+2z)^{n+1} \; dz.$$
Introduce for the RHS
$${2n-k\choose n-1} =
\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^n} (1+z)^{2n-k} \; dz.$$
This yields for the sum
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^n} (1+z)^{2n}
\sum_{k=0}^{n-1} {n-1\choose k} \frac{1}{(1+z)^k} \; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^n} (1+z)^{2n}
\left(1+\frac{1}{1+z}\right)^{n-1} \; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^n} (1+z)^{n+1}
(2+z)^{n-1} \; dz.$$
Put $z=2w$ in this integral to obtain
$$\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{1}{2^n w^n} (1+2w)^{n+1}
(2+2w)^{n-1} \; 2 dw
\\ = \frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{1}{w^n} (1+2w)^{n+1}
(1+w)^{n-1} \; dw.$$
This concludes the argument.
Addendum. Apparently there is another possible version of this
equality which is
$$(-1)^{n-1} \sum_{k=0}^{n-1} {n\choose k+1} (-2)^k
{n+k-1\choose k}
= \sum_{k=0}^{n-2} {2n-k-2\choose n-1} {n-2\choose k}.$$
Re-write the LHS as
$$(-1)^{n-1} \sum_{k=1}^{n} {n\choose k} (-2)^{k-1}
{n+k-2\choose k-1}.$$
We may extend this to include zero because the second binomial
coefficent is zero then, getting
$$(-1)^{n-1} \sum_{k=0}^{n} {n\choose k} (-2)^{k-1}
{n+k-2\choose k-1}.$$
Introduce for the LHS
$${n+k-2\choose k-1} = {n+k-2\choose n-1} =
\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^n} (1+z)^{n+k-2} \; dz.$$
This yields for the sum
$$(-1)^{n-1} \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^n} (1+z)^{n-2}
\sum_{k=0}^n {n\choose k} (-2)^{k-1} (1+z)^k
\; dz
\\ = \frac{1}{2} (-1)^{n} \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^n} (1+z)^{n-2}
(-1-2z)^n
\; dz
\\ = \frac{1}{2} \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^n} (1+z)^{n-2}
(1+2z)^n
\; dz.$$
For the RHS we introduce
$${2n-k-2\choose n-1} =
\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^n} (1+z)^{2n-k-2} \; dz.$$
This yields for the sum
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^n} (1+z)^{2n-2}
\sum_{k=0}^{n-2} {n-2\choose k} \frac{1}{(1+z)^k}
\; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^n} (1+z)^{2n-2}
\left(1+ \frac{1}{1+z}\right)^{n-2}
\; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^n} (1+z)^{n}
(2+z)^{n-2}\; dz.$$
Put $z=2w$ in this integral to get
$$\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{1}{2^n w^n} (1+2w)^{n}
(2+2w)^{n-2}\; 2dw
\\ = \frac{1}{2} \frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{1}{w^n} (1+2w)^{n}
(1+w)^{n-2}\; dw.$$
This once more concludes the argument.