Let $c$ denotes the space of convergent sequences, then $c$ is a closed sub-space of $\ell^\infty$.
Let $f=(f(1),f(2),\dots)\in \ell^\infty\setminus c$, then
$$dist(f, c):=\inf_{g\in c}\|f-g\|_\infty>0$$
Hence by Hahn-Banach extension theorem, there exists $\psi\in(\ell^\infty)^*$ such that
$$\|\psi\|=1,\quad \psi(g)=0 \quad\forall g\in c\text{ and }\psi(f)=dist(f,c)>0$$
Now we claim that $\psi$ is not in the image of $\phi$, that is, we show that there is no $a\in \ell^1$ satisfying
$$\psi(b)=\phi(a)(b),\quad \forall b\in\ell^\infty$$
Assume not, then such an $a\in\ell^1$ exists. Let $(h_k)_{k=0}^\infty$ be a sequence of elements in $c$ defined as
$$h_k(n)=\begin{cases}s(a(n)), &n\leq k\\
0, &n>k\end{cases}$$
where the function $s$ is defined as
$$s(z)=\begin{cases}\frac{|z|}{z} &z\in\mathbb{C}\setminus\{0\}\\
0, &z=0\end{cases}$$
Then for each $k\in\mathbb{N}$ we have
$$\sum_{n=0}^k|a_n|=\sum_{n=0}^\infty a(n) h_k(n)=\phi(a)(h_k)=\psi(h_k)=0$$
as $h_k\in c$. Thus we have
$$\|a\|_1=\lim_{k\to\infty}\sum_{n=0}^k|a_n|=\lim_{k\to\infty}\psi(h_k)=0$$
Hence $a=0$,and thus $\psi=\phi(a)$ is the zero operator, which contradicts $\psi(f)=dist(f,c)>0$.