Let $S(n)$ be the statement: $3^{2n+2}+56n+55$ is divisible by $64$; $n\geq0$
Basis step: $S(0)$:
$3^{2(0)+2}+56(0)+55=9+55$
$\hspace{37.25 mm}=64$, which is divisible by $64$
Inductive step:
Assume $S(k)$ is true, i.e. assume that $3^{2k+2}+56k+55$ is divisible by $64$; $k\geq0$
$\hspace{59 mm}\Rightarrow 3^{2k+2}+56k+55=64A$; $A\in{\mathbb{N}}$
$\hspace{59 mm}\Rightarrow 3^{2k+2}=64A-56k-55$
$S(k+1)$: $3^{2(k+1)+2}+56(k+1)+55$
$\hspace{12.5 mm}=3^{2k+2+2}+56k+111$
$\hspace{12.5 mm}=3^{2k+4}+56k+111$
$\hspace{12.5 mm}=3^{2}\bullet{3^{2k+2}+56k+111}$
$\hspace{12.5 mm}=9\bullet{3^{2k+2}+56k+111}$
$\hspace{12.5 mm}=9(64A-56k-55)+56k+111$
$\hspace{12.5 mm}=576A-504k-495+56k+111$
$\hspace{12.5 mm}=576A-448k-384$
$\hspace{12.5 mm}=64(9A-7k-6)$, which is divisible by $64$
So, $S(k+1)$ is true whenever $S(k)$ is true.
Therefore, $3^{2n+2}+56n+55$ is divisible by $64$; $n\geq0$.