Possible Duplicate:
Fatou's lemma and measurable sets
Let $(X,\Sigma, \mu)$ be a measurable space and $\{B_{i}\}$ be a sequence of sets in $\Sigma$. Then $$\mu\left(\bigcup_{i=1}^{\infty}\bigcap_{n=i}^{\infty}B_{n}\right) \le \liminf_{n\to \infty} \mu (B_{n}).$$
What I know is that $\liminf_nA_n=\bigcup\limits_{n=1}^{\infty}\bigcap\limits_{k=n}^{\infty}A_{k}$ for any sequence $\{A_n\}$. What will happen if I apply measure on both sides?