$$\frac{1}{e}=\lim_{n\to \infty}\left(1-\frac{1}{n+1}\right)^{n+1}$$ How?
To begin I must say that I am aware that: $$e=\lim_{n\to \infty}\left(1+\frac{1}{n}\right)^n$$ but this I do not know how to get. Help?
$$\frac{1}{e}=\lim_{n\to \infty}\left(1-\frac{1}{n+1}\right)^{n+1}$$ How?
To begin I must say that I am aware that: $$e=\lim_{n\to \infty}\left(1+\frac{1}{n}\right)^n$$ but this I do not know how to get. Help?
First notice that $a_n=\Big(1-\frac{1}{n+1}\Big)^{n+1}$ is a subsequence of $b_n = \Big(1-\frac{1}{n}\Big)^{n}$, so it suffices to show that $\lim_{n\rightarrow\infty}b_n = e^{-1}$.
Write $y=\Big(1-\frac{1}{x}\Big)^{x}$. Applying the logarithm to both sides you get
$$\ln y = x\ln\Big(1-\frac{1}{x}\Big)$$
Now the limit $\lim_{x \rightarrow \infty} x\ln\Big(1-\frac{1}{x}\Big)$ is indeterminate $0\cdot\infty$ type, so we can solve it by doing
\begin{eqnarray*} \lim_{x \rightarrow \infty} x\ln\Big(1-\frac{1}{x}\Big) &=& \lim_{x \rightarrow \infty} \frac{\ln\Big(1-\frac{1}{x}\Big)}{x^{-1}} \\ &=&\lim_{x \rightarrow \infty} \frac{\frac{1}{1-1/x}(-1/x)'}{(1/x)'} \\ &=&-\lim_{x \rightarrow \infty} \frac{1}{1-1/x} \\ &=& -1 \end{eqnarray*}
by L'Hopital's rule. By continuity of the logarithm function, we get
$$-1=\lim_{x\rightarrow\infty} \ln y = \ln \Big(\lim_{x\rightarrow\infty}y\Big),$$
so $\lim_{x\rightarrow\infty}\Big(1-\frac{1}{x}\Big)^{x}=\lim_{x\rightarrow\infty} y = e^{-1}$, hence $\lim_{n\rightarrow\infty}b_n = \lim_{n\rightarrow\infty}a_n=\frac{1}{e}$.