What's the the result of:
$$\sum_{k=1}^{n}{\sqrt{k}+1}$$
Thanks.
What's the the result of:
$$\sum_{k=1}^{n}{\sqrt{k}+1}$$
Thanks.
I will assume we want an approximation of $S_n=\sum_{k=1}^n \sqrt{k}$.
First, observe that $\sqrt{k} \leqslant \int_{k}^{k+1} \sqrt{x} \; \mathrm{d}x \leqslant \sqrt{k+1}$ so that : $$ \int_{k-1}^{k} \sqrt{x} \; \mathrm{d}x \leqslant \sqrt{k} \leqslant \int_{k}^{k+1} \sqrt{x} \; \mathrm{d}x $$ by summation we have : $$\int_{0}^{n} \sqrt{x} \; \mathrm{d}x \leqslant \sum_{k=1}^{n+1} \sqrt{k} \leqslant \int_{1}^n \sqrt{x} \; \mathrm{d}x$$ wich lead to :
$$\frac{2n^{3/2}}{3} \leqslant \sum_{k=1}^{n+1} \sqrt{k} \leqslant \frac{2\left((n+1)^{3/2}-1\right)}{3} $$
You can continue further if you want, always the same method.