Consider the Cauchy problem of finding $u=u(x,t)$ such that $$\frac{\partial{u}}{\partial{t}}+u\frac{\partial{u}}{\partial{x}}=0\text{ for }x\in\mathbb{R},t>0\\u(x,0)=u_0(x),\;x\;\epsilon\;\mathbb{R}$$
which choice(s) of the following functions for $u_0$ yield a $C^1$ solution $u(x,\ t)$ for all $x\in\mathbb{R}$ and $t>0.$
- $u_0(x)=\frac{1}{1+x^2}$
- $u_0(x)=x$
- $u_0(x)=1+x^2$
- $u_0(x)=1+2x$
Because characteristic of the given PDE is $U=U_0(x-ut)$ from option 2, 4 only the satisfies the given PDE is i am right