How can I prove this in the predicate logic?
$B \rightarrow \exists xA $ Eq $\exists x (B \rightarrow A)$
How can I prove this in the predicate logic?
$B \rightarrow \exists xA $ Eq $\exists x (B \rightarrow A)$
Demonstrate $B\to \exists x\; A \;\vdash\; \exists x\;(B\to A)$, by natural deduction. $$\begin{array}{ll}B\to \exists x\;A & \text{P1} \\ \begin{array}{|ll} B & \text{Assume} \\\hline \exists x\;A & \text{Implication Elimination} \\ {A\mid}^x_c & \text{Existential Elimination} \end{array}\\ B\to {A\mid}^x_c & \text{Implication Introduction} \\ \exists x\;( B\to A ) & \text{Existential Introduction} \\ \Box\end{array}$$
Left to do: demonstrate $\exists x\;(B\to A) \;\vdash\; (B\to \exists x\;A)$